Главная » Файлы » Дистанционное обучение » Для детей и родителей |
28.04.2022, 14:15 | |
Для высоких скоростей Летательные аппараты этой группы оптимизированы под однорежимный полет с максимальной скоростью. Из спортивных классов сюда можно отнести кордовых скоростников F2A и гоночные группы D, кордовые F2C, радио-ДВСки F3D и радио-электрички F5D. А также многочисленные экспериментальные и рекордные самолеты. Поскольку скорость полета этих самолетов очень высокая, то характер поведения Су мало кого волнует. Скоростной напор очень высок и полет проходит при малых углах атаки и малых значениях Су. Главное для профиля этих моделей, - минимально возможное значение Сх при крейсерской скорости полета. Его значение зачастую определяет лобовое сопротивление всего самолета. Такая оптимизация достигается уменьшением толщины профиля до величин, когда определяющим становится уже не аэродинамика обтекания, а строительная прочность и жесткость крыла на кручение. Применение современных высокопрочных и высокомодульных композитных материалов позволило уменьшить толщину профиля гоночных моделей до 5 – 7 %. Кривизна профиля применяется около 1 – 2% для возможности крейсерского полета с нулевым углом атаки, Сх – при этом минимален. Вместе с острым носиком типовой гоночный профиль выглядит так:
Такие профили плохо работают на взлетно-посадочных режимах, когда скорость полета невелика. Самолет с таким профилем имеет плохие штопорные характеристики и маленький критический угол атаки. Острый носик и почти плоская верхняя поверхность профиля легко провоцируют срыв обтекания. Поэтому сажать такие самолеты приходится на больших скоростях, что требует высокого мастерства пилота. Типовое значение чисел Re для этой группы профилей может легко превысить 1000000. Для пилотажного самолета, наряду с другими требованиями, важна симметрия летных характеристик для прямого и перевернутого полета. Поэтому в их крыльях используются исключительно симметричные профили. Относительная толщина профиля, определяется исходя из предполагаемых чисел Re при выполнении фигур. Для классического пилотажа типовая толщина профиля – 12-15 %. Чтобы обеспечить качественное исполнение срывных фигур, таких как «штопор» и «штопорная бочка» носик профиля имеет достаточно малый радиус скругления. Фан-флаи тоже предназначены для выполнения пилотажных фигур, но на гораздо меньших скоростях. Для них важен плавный, а не резкий срывной режим. Толщина профиля здесь до 20% и максимально большой радиус скругления носика профиля. Почему радиус скругления так влияет на срывные характеристики? Обратимся к картине обтекания толстого профиля с тупым носиком на малом и большом углах атаки
Хорошо видно, что точка разделения верхнего и нижнего пограничных слоев при изменении угла атаки перемещается по образующей носика. Поэтому переход к срыву потока при увеличении угла атаки здесь происходит позже и более плавно. Для острого носика такое перемещение приводит к локальному резкому повышению скорости обтекания в месте большой крутизны носика. Такое повышение провоцирует более ранний отрыв пограничного слоя сразу от носика профиля. На графиках Cy=f(a) это выражается так:
Частный случай пилотажки – учебно-тренировочный самолет. Вообще то сочетание этих названий в одном самолете не совсем правильное. Для учебного самолета хорошо подходит плоско-выпуклый профиль ClarkY, с относительной толщиной 15-18%. Он обеспечивает при прочих равных условиях более низкую скорость сваливания на крыло, что для учебки очень важно. Однако, тренировать на нем навыки выполнения фигур пилотажа неудобно, поскольку он имеет ярко выраженную асимметрию характеристик. У тренировочной модели должен быть тот же профиль и та же нагрузка на крыло, что и у пилотажки, на которой пилот будет выступать на соревнованиях. Помимо самолетов обычной схемы с оперением, бывают самолеты без оперения. Чаще всего киль все-таки сохраняется в том или ином виде, а вот стабилизатора нет вовсе. О достоинствах и недостатках такой аэродинамической схемы мы говорить здесь не будем. Балансировка и продольная устойчивость таких самолетов достигается за счет различных конструктивных ухищрений. Но, если крыло бесхвостки не стреловидное, а прямое, то единственный способ обеспечить балансировку и продольную устойчивость самолета – применить на крыле самобалансирующийся профиль:
Как видно, у таких профилей кривизна меняет вдоль хорды свой знак. В передней части профиля он выпуклый вверх, в задней – вниз. Такие профили еще называют S-образными, потому что средняя линия профиля напоминает латинскую букву S. Чем замечательны эти профили? У обычного несимметричного профиля при увеличении угла атаки точка приложения аэродинамической силы R смещается по хорде профиля вперед. При этом момент крыла, способствующий подъему носа самолета, увеличивается с ростом угла атаки. Крыло с таким профилем само по себе, без оперения устойчивым быть не может. У S-профилей наоборот. В диапазоне летных углов атаки увеличение этого угла приводит к смещению точки приложения аэродинамической силы по хорде профиля назад. В результате появляется момент на пикирование, стремящийся вернуть угол атаки к первоначальному значению. К сожалению, в жизни не бывает, чтобы к бочке меда не добавили ложку дегтя. Так и здесь. Увесистая ложка дегтя: у S-профилей значительно более низкие предельные значения Су. Это заставляет конструктора самолета при равной с обычной аэродинамической схемой скорости полета делать у бесхвостки гораздо меньшую нагрузку на крыло, то есть значительно увеличивать площадь крыла при равном весе с самолетом обычной схемы.
| |
Просмотров: 154 | Загрузок: 0 | |
Всего комментариев: 0 | |