MENU
Главная » Файлы » Дистанционное обучение » Для детей и родителей

Профили свободнолетающих моделей
24.04.2022, 14:13

Для малых скоростей

Познакомившись с основными понятиями, рассмотрим особенности аэродинамики профиля крыла при разных расчетных значениях Re.

Самыми тихоходными летающими моделями являются комнатные модели класса F1D. Скорости полета у них настолько малы, что их аэродинамика вообще не изучена. Кроме этого класса такие числа нигде больше не используются. Профиля крыла там, собственно и нет. Точнее он вырождается в тончайшую, толщиной в несколько микрон изогнутую пленку. Далее мы о таких моделях говорить не будем, – слишком уж они специфичны.

Следующими тихоходами являются свободнолетающие модели класса F1. Как известно, для этих моделей главной задачей является максимум времени парения в воздухе. Поскольку правилами ограничена минимальная нагрузка на крыло (отношение веса модели к площади его крыла), то увеличение продолжительности полета достигается за счет максимально возможного значения Су. При этом аэродинамическое качество получается отнюдь не наибольшим, но оно и не важно. Даже внутри класса F1 используются разные профили, попробуем разобраться - почему?

На свободнолетающих планерах – класс F1A используются профили с очень большой кривизной. Они позволяют летать на минимально-возможной скорости с очень большим значением Су. Часто используются профили Бенедека, слегка модифицированные. Сейчас у национальных спортсменов популярен профиль Макарова-Кочкарева – именитых московских спортсменов:

https://archive.rcopen.com/var/rcd/storage/images/articles/avia/wings_profile/ris11/27417-1-rus-RU/ris111.gif

У таких профилей есть она особенность – работа на низких значениях Re. В этом случае скоростной напор невелик, и допустимый перепад давлений вдоль верхней дуги профиля – тоже. Работа на углах атаки, близких к критическому, создает угрозу к срыву обтекания и проваливанию модели. Для оптимизации обтекания применяют специальные меры. В частности, для увеличения толщины пограничного слоя (толстый пограничный слой более устойчив) используют для обтяжки крыла материал с повышенной шероховатостью. У более шероховатой поверхности силы трения о воздух больше, чем у гладкой. Это, конечно, снижает аэродинамическое качество, но позволяет использовать большие углы атаки и большее Су, что важно для увеличения продолжительности полета. Сейчас используется специальная двухслойная пленка с шероховатой поверхностью. В прошлом – микалентные длинноволокнистые сорта бумаги.

Выше уже говорилось о двух режимах обтекания – ламинарном и турбулентном. Достоинством ламинарного обтекания профиля является малое трение крыла о воздух, и как следствие – меньшее его профильное сопротивление. Но ламинарное течение в пограничном слое снижает его устойчивость к отрыву от профиля при увеличении угла атаки. Турбулентный пограничный слой отрывается позже ламинарного, при больших углах атаки и больших Су. Чтобы поднять несущие свойства профиля на крыльях планеров F1A устанавливают специальный турбулизатор, который создает в пограничном слое вихри и повышает его устойчивость к отрыву. Чаще всего турбулизатор представляет из себя тонкую нить, приклеенную в нескольких миллиметрах от носика профиля на верхней поверхности крыла. Чтобы он не провоцировал преждевременный срыв потока, иногда его приклеивают зигзагообразно. Профиль планеров F1A оптимизирован только под один режим полета – парение, поскольку во время затяжки леером его аэродинамические свойства играют второстепенную роль.

У резиномоторных моделей класса F1B помимо парения есть еще режим моторного полета. Поскольку скорость моторного полета невелика, на этих моделях часто используют те же профили что и на F1A. Некоторые моделисты используют профили с меньшей кривизной. Дело в том, что большое значение кривизны профиля обуславливает и значительное профильное сопротивление крыла. На моторном режиме нет потребности в высоком значении Су, и повышенное профильное сопротивление на малых углах атаки снижает скорость набора высоты.

Некоторые спортсмены в этом классе успешно используют управление пограничным слоем. Для этого в верхней обшивке крыла делаются два ряда отверстий – в районе максимального разряжения и недалеко от задней кромки крыла, где разряжение невелико:

https://archive.rcopen.com/var/rcd/storage/images/articles/avia/wings_profile/ris12/27420-1-rus-RU/ris121.gif

За счет разности давлений часть воздуха через второй ряд отверстий отсасывается и подается внутри полости крыла на передний ряд, - в зону максимального разряжения. Подача дополнительного воздуха в эту зону оттягивает срыв потока на большие углы атаки, за счет чего достигается большее значение Су. Попутно отметим, что сдув и отсос пограничного слоя широко используется на больших самолетах (истребителях) при взлетно-посадочных режимах. Там, правда, совсем другие числа Re.

Особенно значима двухрежимность работы крыла на таймерных моделях класса F1C. Здесь время моторного полета жестко ограничено пятью секундами, и при равной мощности мотора, высота взлета определяется Сх крыла. Если на таймерку поставить профиль с F1A, то высота взлета уменьшится, что не компенсируется более высоким Су на этапе парения. Поэтому профиль для таймерных моделей выбирается как компромисс между малым значением Сх при нулевой подъемной силе (таймерки взлетают вертикально) и высоким значением Су.

Представляет интерес техническое решение, которое можно смело назвать бескомпромиссным. Чемпион России и Европы в классе F1C Леонид Фузеев из Саратова сделал крыло таймерки складным втрое. На этапе моторного взлета консоли крыла складываются, образуя симметричный профиль крыла в 2,5 раза меньшего размаха:

https://archive.rcopen.com/var/rcd/storage/images/articles/avia/wings_profile/ris13/27423-1-rus-RU/ris131.gif

После набора высоты и остановки мотора крыло раскладывается в полный размах. По наблюдениям автора на финале последнего Чемпионата России, модель Фузеева взлетает не выше других призеров. Сказывается высокая толщина профиля сложенного крыла. Однако, на этапе парения она не оставляет надежд другим моделям, поскольку Леонид применил чисто планерный профиль Макарова-Кочкарева с большой кривизной.

Так подробно рассмотрены профили свободнолетающих моделей потому, что многолетняя история развития сформировала их весьма высокое техническое совершенство. У моделистов периодически возникает соблазн заимствовать готовые решения из класса F1 для радиоуправляемых моделей. С одним из таких решений – классическим чемпионатным планером F1A, конвертированным в радиоуправляемый для выступления в классе кроссовых планеров, автор познакомился на прошлогодних межнациональных соревнованиях самолетостроительных предприятий в Орле МАП-2003. Такую конструкцию привез молодой спортсмен из Запорожья. С точки зрения развлекательной – это интересное решение. Однако, по летным качествам для спортивных целей оно интереса не представляет. Профиль с большой кривизной хорош только для полетов модели вместе с потоком воздуха на минимальных относительных скоростях. Попытка рулить таким планером против даже слабого ветра, показала его непригодность для управляемого полета, - планер либо сносило ветром, либо он просто сыпался с высоты.

Категория: Для детей и родителей | Добавил: Admin
Просмотров: 269 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]